MATH 1A - QUIZ 9 - SOLUTIONS

PEYAM RYAN TABRIZIAN

(1) (5 points) Sketch the graph of $f(x)=\frac{\sin (x)}{1+\cos (x)}$

S Notice that f is periodic of period 2π, hence from now on we will only focus on $[0,2 \pi]$.

Moreover:

$$
f(-x)=\frac{\sin (-x)}{1+\cos (-x)}=\frac{-\sin (x)}{1+\cos (x)}=-f(x)
$$

Hence f is odd.
D We want $1+\cos (x) \neq 0 \Rightarrow \cos (x) \neq-1 \Rightarrow x \neq \pi+2 \pi m$ (where m is an integer), hence $D o m=\mathbb{R}-\{\pi+2 \pi m\}$ (in other words, everything except odd multiples of π)

I y-intercept $f(0)=\frac{0}{2}=0, x$-intercept: $f(x)=0 \Leftrightarrow \frac{\sin (x)}{1+\cos (x)}=0 \Leftrightarrow$ $\sin (x)=0 \Leftrightarrow x=\pi m$, where m is an integer.

HOWEVER, notice that for odd $m, \pi m$ is NOT in the domain of f, hence the x-intercepts are $x=2 \pi m$, where m is an integer (that is, even multiples of π)

A No Horizontal or Slant Asymptotes because f is periodic.

$$
\begin{aligned}
& \lim _{x \rightarrow \pi^{-}} \frac{\sin (x)}{1+\cos (x)} \stackrel{H}{=} \lim _{x \rightarrow \pi^{-}} \frac{\cos (x)}{-\sin (x)}=\frac{-1}{-0^{+}}=\infty \\
& \lim _{x \rightarrow \pi^{+}} \frac{\sin (x)}{1+\cos (x)} \stackrel{H}{=} \lim _{x \rightarrow \pi^{+}} \frac{\cos (x)}{-\sin (x)}=\frac{-1}{-0^{-}}=-\infty
\end{aligned}
$$

Hence $x=\pi$ is a vertical asymptote (and more generally $x=\pi+2 \pi m$)
I
$f^{\prime}(x)=\frac{\cos (x)(1+\cos (x))-\sin (x)(-\sin (x))}{(1+\cos (x))^{2}}=\frac{\cos (x)+\cos ^{2}(x)+\sin ^{2}(x)}{(1+\cos (x))^{2}}=\frac{1+\cos (x)}{(1+\cos (x))^{2}}=\frac{1}{1+\cos (x)}$

Drawing a sign table, we get:
1A/Math 1A - Fall 2013/Quizzes/Quiz9table1.png

Therefore f is increasing on $(0, \pi)$ and on $(\pi, 2 \pi)$. No local max/min
\square $f^{\prime \prime}(x)=\frac{-(-\sin (x))}{(1+\cos (x))^{2}}=\frac{\sin (x)}{(1+\cos (x))^{2}}$
Drawing a sign table, we get:
1A/Math 1A - Fall 2013/Quizzes/Quiz9table2.png

\mathbf{x}	0	π	
$\mathbf{f}^{\prime}(\mathbf{x})$		+	-
	C.U.		

Therefore f is concave up on $(0, \pi)$ and concave down on $(\pi, 2 \pi)$; Inflection point $(0,0)$ (or more generally $(2 \pi m, 0)$)

Note: This is not obvious from the table, but if you look at your graph, you'll notice this! The true reason is that f does change concavity at 0 and at 2π and at 4π etc (which your table does not reflect)

Hence, the graph of f looks like:
1A/Math 1A - Fall 2013/Quizzes/Quiz9graph.png

(2) (1 point) Solve the differential equation $x\left(y^{\prime}\right)+y=\sec ^{2}(x)$.

Notice that the left-hand-side is precisely $(x y)^{\prime}$ (by the product rule), and hence the differential equation becomes $(x y)^{\prime}=\sec ^{2}(x)$

Antidifferentiating, we get: $x y=\tan (x)+C$
Hence: $y=\frac{\tan (x)+C}{x}$
(3) (4 points) What is the area of the largest rectangle that can be inscribed (put in) a circle of radius R ?
(1) First draw a good picture! (here r is meant to be R)

1A/Math 1A - Fall 2013/Quizzes/Quiz9Rectangle.png

(2) Based on your picture, the length of the rectangle is $2 x$ and the width is $2 y$, and the area is $A=(2 x)(2 y)=4 x y$. But since (x, y) is on the circle, $x^{2}+y^{2}=R^{2}$, so $y=\sqrt{R^{2}-x^{2}}$, so $A(x)=4 x \sqrt{R^{2}-x^{2}}$. But instead of maxizing A, let's maximize:

$$
f(x)=A^{2}=16 x^{2}\left(R^{2}-x^{2}\right)=16 x^{2} R^{2}-16 x^{4}
$$

(3) The constraint is $0 \leq x \leq R$
(4) $f^{\prime}(x)=32 R^{2} x-64 x^{3}=32 x\left(R^{2}-2 x^{2}\right)=0$

Which gives $x=0$ or $x^{2}=\frac{R^{2}}{2}$, hence: $x=\frac{R}{\sqrt{2}}$ (we're ignoring $x=0$ and $x=-\frac{R}{\sqrt{2}}$ here)

Also, $f(0)=f(R)=0$, and:

$$
f\left(\frac{R}{\sqrt{2}}\right)=16\left(\frac{R}{\sqrt{2}}\right)^{2}\left(R^{2}-\left(\frac{R}{\sqrt{2}}\right)^{2}\right)=16 \frac{R^{2}}{2}\left(R^{2}-\frac{R^{2}}{2}\right)=8 R^{2} \times \frac{R^{2}}{2}=4 R^{4}>0
$$

So by the closed interval method, $f\left(\frac{R}{\sqrt{2}}\right)=4 R^{4}$ is the absolute maximum of f.

And hence the largest area is $A=\sqrt{4 R^{4}}=2 R^{2}$ (remember that we squared A to get f, so we have to take square root of f to get A back).

Note: Incidentally, the optimal rectangle is a square! (but you did not need to know that to solve the problem)

